Solutions for Singular Critical Growth Schrödinger Equations with Magnetic Field
نویسندگان
چکیده
In this paper, we are concerned with the semilinear Schrödinger equation (1.1) −∆Au− V (x)u = |u| ∗−2u , x ∈ R , where −∆A = (−i∇+A)2, u : R → C, N ≥ 3, 2∗ = 2N N−2 denotes the critical Sobolev exponent, A = (A1, A2, ..., AN ) : R N → R is the vector (or magnetic) potential, the coefficient V is the scalar (or electric) potential and may be signchanging. The nonlinear Schrödinger equation arises in different physical theories (e.g., the description of Bose–Estein condensates and nonlinear optics), and has been widely considered in the literature, see [1, 6, 7, 8, 11, 13]. Throughout this paper, suppose A ∈ Lloc(R ,R ). Define L(R , V −dx) := {
منابع مشابه
Asymptotic Behavior of Solutions to Schrödinger Equations near an Isolated Singularity of the Electromagnetic Potential
Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis-Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملOn Asymptotic Behavior of Solutions to Schrödinger Equations with Singular Dipole–type Potentials
Asymptotics of solutions to Schrödinger equations with singular dipole-type potentials is investigated. We evaluate the exact behavior near the singularity of solutions to elliptic equations with potentials which are purely angular multiples of radial inverse-square functions. Both the linear and the semilinear (critical and subcritical) cases are considered. Dedicated to Prof. Norman Dancer on...
متن کاملExistence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in R
Mountain pass in a suitable Orlicz space is employed to prove the existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in RN . These equations contain strongly singular nonlinearities which include derivatives of the second order. Such equations have been studied as models of several physical phenomena. The nonlinearity here corresponds to the superf...
متن کاملPositive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کامل